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This report was prepare_ by the A_vance_ Flight Mechanics

De_nt; Navigation, Guidance and Control, Lockhee_ Missiles &

Space Cc_, Shumyvale, California. It presents the final docu-

mentation c_ the work completed for the NASA Langley Research Center

under Contract NAS 1-6395.

The stu_7 was planne_ an_ conducted by D. I. Kepler. Mr. H.

N. Stone was responsible for the operation an_ mo_ific&tLon of the

optimization program, the development of the simplifie_ hill climber

routine, an_ a major portion of the data analysis. Valuable assistance

was provlde_ by R. E. _illwerth and B. _. Silver of A_vance_ Flight

Mechanics an_ by R. C. Rosenbaum of the LMSC Aerospace Sciences Laboratory.

The vehicle structural weight formulations and the associatc,i weight

constants use_ in this investigation were obtalne_ fr_ an analysis ms_e

by John D. Bir_ of the NASA Langley Research Center.
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A dwLl-loop gradient optimization method is described which was

developed for the solution of design synthesis problems on large multiple

stage liquid propellant launch vehicles. The complete formulation of

the system optimization equations i8 presented.

The procedure was mechanize_ in a digital computer program that

incorporates an a_vance_ version of the PRESTO trajectory optinLtzatton

routine. This program was applied to a series of model liquid launch

vehicle design problems using radically simplified equationu for the

relationship_ between the design and the Jettison weights. The results

from those problems are described in detail.

A convergence study _a8 conducted to inveati_te problems

encountered with the system optimization coNputer program. The gradlent

optimization problem was reduced to a problem in two controls and a high

spee d computer routine was used to investigate the behavior of various

gain selection and non-linear approaches. Representative r_sults are

presente_ for these convergence studies.

Brief convergence studies were also completed using the system

optimization computer program. The results are presented from a 8ystematle

study of the influence of optimization gains on the program behavior.

Results are included from two experimental cases run with a modified

parabolic fit routine developed to accommodate some of the _econd order

influences.

Most of the gain selection and non-linear techniques investigated

demons_rate_ substantial improvements in convergence on 8el#cted problems.

None Of the techniques demonstrated consistently superior _ehavior on all

problems over that of the original gradient routine.

The l_8ic problem remains. The current system optimization routine

does not consistently reach solutions within the number of iterations or

_,__ with the accuracy of modern _4lent trajectory optimtzatio_ pro_s.

Some new approaches are therefore su_ested that offer the promise of _e

consistent behavior 8o neeeuary for pre_tie_l optimtzatioq routiUelo
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q Time derivative of
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Mass partials with respect to system _riables
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Section 1.0

INTRODUCTION

The nature of the launch system performance problem changes as the

design departs more radically from existing components. At one extreme a

series of existing components are assembled and performance is determined

by simulating the behavior of those components in a prescribed environment.

The variables that may be adjusted to satisfy the mission constraints are

almost completely divorced from the component design and system arrangement.

Maximum perfo1_ance is achieved by varying the control history to produce

maximum paylosd with fixed mission constraints or to maximize some mission

parameters with fixed payload. At the other extreme all component and

system variables and the control history are free. Maximum p_rformance is

achieved by varying both the design variables and the control history to

satisfy the mission requirements with the lightest or lowest _ost system,

or to maximize the payload within selected weight or cost constraints. One

problem involves optimization of control with fixed system chi_racterlstics.

The other includes optimization of both the system characteristics and the

control with _ome sizing parameters fixed. In its most general form it

embodies the complete synthesis of a launch system that in s_e sense delivers

maximum performance.

The work described in this report considers a category of optimization

problems that is between these extremes. Many of the launch _ystem charac-

teristics are fixed so that the synthesis problem is reduced _o one that

Includes only selected variables. The influence of some vari@bles such as

1-1
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the number of stages, the specific impulse of the propellants used, and

the structural efficiency are evaluated by trial and error. (_hers,

however, such as stage propellant capacities and thrust level_, are

included directly in the optimization process along with the _:ontrol

history.

A gradient technique is used to solve this reduced launch system

optimization problem. The approach closely parallels that used in the

PRESTO 1 and PRESTO I_ computer programs developed by L_SC fo_, the NASA

Langley Research Center during 1964 and 1965. The procedure vas first

applied by _MSC to design optimization problems for large mul$i-stage solid

propellant launch vehicles carrying payloads to low altitude earth orbits.

This early work considered both maximum performance and minim_ cost

problems. The digital computer programs developed for that purpose success-

fully determined the combination of up to sixteen design variables together

with the attitude program that produced maximum payload or minimum cost•

The operation of these programs proved somewhat difficult. Convergence

problems were frequently encountered and multiple passes were required to

achieve acceptable solutions. The programs were also slow, requiring about

•5 hr. UNIVAC 1107 time per run. It was consequently expensi_ze to experiment

with the optimization gain and step size selection techniques required to

resolve these convergence difficulties.

During 1966 two events occurred that carried the promi_se of circum-

venting the difficulties associated with these early programs. The PRESTO II

computer prog_am which offered about a factor of five increas@ in speed for

control program optimization was completed. New UNIVAC 1108 icomputers were

introduced that provided an additional factor of five speed improvement with

only a moderate cost increase. The potential was thereby cre_ted for at least

an order of magnitude reduction in the computer costs for sol,ring launch system

optimization problems. It was then possible to economically _xper.iment with

the convergence problems that plagued the earlier programs.

1-2
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In early 1966 MC proposed 3 to NASA Langley Research Center a low

level_ 9-month study with the following objectives.

I) Adapt the solid propellant launch vehicle optlmizqtlon pro_m

to a simpler, liquid propellant launch vehicle problem.

2) Incorporate the new PRESTO II control progrsm optimization
routlne.

B) Run a matrix of mlssion-vehicle optimization problems to

determine the sensitivity of performance to the d_slgn

vaciables and to identify convergence problems.

_) Define the program changes required to include a _7namic

pressure constraint during the optimization.

Work was inltiate_l on this study in June 1966 under Contract NAg 1-6395.

The results from the study are presented in this report which

includes a conceptual description of the optimization progr_ logic, the

derivation of the optimization and d_rnamic pressure constrain_ relationships,

and results fro_ the optimization and convergence studies.

1 PRESTO- Pro_ram for Rapid Earth-to-Space Tra_ector_ Optimi_tion, NASA
Contractor Report NASA CR-I_, Februrary 1_5.

2
PRESTO II- A Digital Computer I_. o_an for Tr_ector_ O_tim_zation ,
NASA CR-686, Yebrteary 1967.

3 Launch Vehicle O_ti_tzation. Sty., Technical Proposal, LMS_ 89_,

Feb 1966.
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Section 2.0

ANALYTICAL APPROACH

2. i Optimization Concept

A gradient optimization procedure is used to determine the combination

of launch system parameters that produces maximum payload and simultaneously

satisfies the mission and sizing constraints. The approach i_ somewhat

unusual in that the trajectory optimization process has been _eparated from

the system optimization process. The operation is outlined in Figure 2-1.

Nominal system characteristics are defined by selectin_ a set of

numerical values for the design variables that must be optimil_ed. In this

discussion these variables will be called the system controls, The design

equations are next used to define the input parameters necessl_ry to simulate

the ascent trajectory. The trajectory control history is now optimized

using the PRESTO or PRESTO II gradient optimization routines to satisfy the

mission constraints and to determine maximum payload for the _selected nominal

system controls.

Exchange ratios are then computed that define the derivative of payload

with respect to each trajectory program input under the condition that the

mission const:_ints remain satisfied. These exchange ratios are combined with

propulsion derivatives and numerically formed Jettison weight partials to

produce the optimization partials that will be used for optimization of the

system controls. The optimization partials are the derivatives of final payload

and launch weight with respect to each system control.

System control changes are now computed to produce selected changes in

launch weight and payload using a steepest descent computation. These changes

are added to the original system controls selected for the namlnal vehicle an_

the design equations are re-entered to produce a new nominal. The entire

process is then repeated until a specified minimum payload l_rovement can no

longer be achieved without violating the launch weight or mlulon constraints.

2-!
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This optimization concept involves two gradient optimization loops,

one for the system controls and one for the trajectory controls. The tra-

Jectory loop onerates inside the system loop and a complete trajectory

optimization is required for each syst_ loop iteration. Information is

fed between the two loops in the form of exchange ratios and the launch and

burnout weights for each iteration. A direct output is available from the

trajectory loop in the form of the intermediate trajectory iterations and

the final optimized trajectory for each vehicle iteration.

The dual loop concept can be considered an intermediat_, step between

a direct simul÷_neous optimization of both the trajectory and the launch

vehicle and a technique where the vehicle adjustments are determined

separately and then tested on the trajectory optimization program. It

carries the advantage of the latter in that a complete design, its maximum

payload and ascent trajectory are available at each iteration. It has the

disadvantage of substantially increased run times since the n_ber of tra-

Jectories computed is equal to the product of the inner and o_ter loop

iterations.

The dual loop approach was selected both for expediency in producing

an operating optimization program and to keep the system and _raJectory

influences separated so that we could take advantage of the f_el that had

already been established for the trajectory optimization and _ystem optimization

processes. The concept proved particularly useful in that it appears to be

more easily understood by those familiar with previous system optimization

techniques. It also provides the intermediate output necessary to convince

a customer that a systematic procedure has been completed tha_ converges

toward an optimum system.

For the future some questions remain about the approach for an ultimate

system synthesis program. The direct simultaneous optimizatiQn of both the

system a_d the trajectory obviously offers the potential for She shortest run

times. The du_l loop approach may, as discussed in Section 3j offer some

-- | II I __ •
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advantages when significant nonlinearities are encountered in the system

characteristics. The convergence problems that will be encountered with

the simultaneous approach are as yet unknown and should be explored further.

2.2 Optimization Formulation

The arrangement selected for the optimization equations was based on

the requirements of earlier solid propellant vehicle optimization studies.

The system design parameters that proved most convenient for this work were

the propellant loads (P), the chamber pressures (p), the burn times (t),

and nozzle expansion ratios (e) for each stage. In order to minimize the

number of program modifications required for this study, this set of design

parameters ha_ been retained. However, the chamber pressure and nozzle

expansion ratios remain fixed at the nominal input values for each case

considered, since the weight equatiOnS used for the liquid propellant launch

vehicles do not reflect the influence of changes in these parameters. The

design parameters or system controls then become the propellant loads and

burn times for each stage. The following equations relate th_ system controls

to other parameters of interest, such as vacuum thrust an_ s_ecific impulse.

CF C*
-- V

IBP go

CF C
v P

T,, -
go _"

 hereCF -- f(c)

T Tt Tt
V V V

go• gomp P (2-1)
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_he optimization problem is formulated for the system controls by

writing the following equation in payload (f) and launch wei_t (W) with

changes in the system controls. In this case the launch weight represents

6f = _W
_f

6Xi
i

(2-2)

6W = _ 5W 8xi (2-3)
i

a constraint on the system design during optimization and is used to prevent

the size of the system from increasing without limit as pa'yl_d improvements

are sought. _Fne steepest descent solution to these equations is defined by

the following,

6X i _f _
(_i = gains)

which asserts that we will move each of the system controls in proportion to

its effect on both the payoff and the constraint. When this solution is

substituted _nto the previous equations, the following expression is derive_ for

the control changes necessary to achieve specified changes i_ the payoff ar_l

constraint.

i I i001S_W SF

6xl _ _w Sw _f S_w _w

_i o _x--_÷ . ' _-q (2-,,)

where

V(_f_2
SF = i._il _i ,_

i "

i 4,,
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It is interesting that _MI. (2-_) can be rearranged as follows_

8X i

n i

p I f-- SFW SF
_X i

5W

sw sFw_Xi 6f +

D D

6W

Notice that this form of the expression is directly comparable with that used

in the trajectory program where we have separated the influenees of the

constraint and payoff. In this case the multiplier of the payload improvement

corresponds to the mass row of the B matrix in the trajectory program and the

multiplier of the launch weight change corresponds to the remaining elements

of the B matrix in the trajectory program.

The optimization procedure followed to determine the b_st combination

of system controls is remarkably similar to that used in the PRESTO trajectory

program. System control changes are computed for selected pa_rload improvements

and simultaneous launch weight adjustments using Eq. (2-4). _hese changes are

then added to input nominal values and the new design is tested to determine

whether the desired performance improvement was achieved. The results of this

test determine the course of action to be followed for the ne_ iteration.

The first step in the solution for the system control _hanges is to

establish the changes in payload and launch weight for Eq. (2_4). The approach

used in the system optimization loop is again similar to that used in the

PRESTO trajectory optimization loop. The solution to Eq. (2-2) and (2-3) is

i:



|

rearrange_ In the form

spw-s f.]

]
and substltmted back into the expression for the change in payload. _e

resulting equation is

i

(2-5)

•his manipulation has rearranged the expression to combine the control changes

so that the initial step size estimate can reflect our feel for the nature

of the control changes rather than our guess at the payload improvement. It

could be used directly in this form by solving the quadratic for paylos4

improvement as a function of the combined control changes and constraint

a_justment. Problems can arise, however, if the constraint adjustment is of

such magnitude that the estimated control changes are inadequate to satisfy

that requirement alone. Mathematically, this situation causes imaginary

numbers in the expression for payload improvement. We have, therefore, resorted

to a procedure where the constraint changes are separated as follows: Eq. (2-5)

is first so1_ for the case of fixed constraints by zeroing the constraint

change terms; this gives the following relationship between the payload change

an_ the control changes.

(2-6)

The multiplier of the control changes in this expression is the gradient of

the payloa_ umder the condition that the constraint remains Tixed, as such

z-7



it will approach zero as the optimum combination of system controls is

approached. A second solution is added to Eq. (2-6) to accommedate the

constraint adjustment. This solution is developed by solvir_ Eq. (2-3) as

though we were concerned with constraint changes only. The steepest descent

solution to Eq. (2-3) then become

substitutin this into Eq. (2-2),we have

This expression relates payload to the constraint adjustment u_der the condition

that the constraint adjustment is achieved with a minimum of s_m square control

change. The procedure is essential to the understanding of the performance

exchange ratio formulations that will be developed later. Adding this result

to Eq. (2-6), have

The basic expressions have now been defined for the system optimization

loop. In the optimization program the sequence begins with a launch weight

correction run using Eq. (2-7) to define the system control changes. Eq. (2-9)

is then used to estimate the _payload improvement for the first system optimization

iteration. The technique from this point differs from the PRESTO approach in

that we continue to use Eq. (2-9) at each iteration to estimate the payload

improvement for the next iteration. The result is a constant step size operation

•rather than the expanding step size operation of the PRESTO p_. After an
Q

unsuccessful case_ the step size is halved by halving the quantity N from



Eq. (2-9) and the process is continued until the payloa_ increment computed

from Eq. (2-9) becomes less than a pre-selected minimum.

In order to help with the evaluation of the convergence process, one

additional set of optimization parameters is computed. These parameters are

designated the optimization derivatives and represent the derivatives of

payload with respect to the system controls under the conditlc_ that the con-

straint (launch weight) is held fixed by a minimum sum square a_ustment in

the remaining controls. Algebraically_ this is written

_f i _f _W _f i

_fl! which is formed by dropping the
The new term in this expression is B-@,Xi

derivatives related to the control from each sum used in the equation. Thus,

" xl xi (2-1o)

This is the expression used to compute the optimization derivatives which

will approach zero as the procedure approaches the optimum combination of

system controls. This completes the derivation of the relationships used

for optimization.

e

2.3 Exchange Ratio Formulation

The key to the approachuse_l for the system parameter optimization

program lies in the derivatives that link the inner and outer loops of the

optimization process; that is, the performance exchange ratios. These

quantities are defln_ as the derivatives of final mass with respect to each



of the trajectory program inputs, under the condition that thQ mission constraints

remain satisfied. They are computedfollowing a trajectory ol_timization sequence

before the final guided run is initiated.

_he assumption used is that the trajectory control history is readjusted

in a minimum integral square sense to maintain the constraints as the program

input varies. While this at first glance seems rather arbitrary, it is

important to recognize that if an optimum trajectory has been obtained before

the exchange ratios are computed, then the assumption used for the control

readjustment is unimportant. This is true because any departure from the

optimum control history _ produces no first order change in the final weight.

The description of the exchange ratio formulation is developed in the

following paragraphs, first for a simplified problem that is used to illustrate

the procedure. The results are then expanded to the form of the complete

expressions used in the optimization program. Although only the fixed final

stage or variable launch weight option of the trajectory program is used by the

system optimization program, exchange ratios will for completeness be derived

for both the variable and fixed final stage options. This is consistent with

the history of their original development and might therefore help to clarify

the approach.

2.3. i Simplified Formulation

Consider first a single-stage vehicle operating outside of the atmosphere.

Exchange ratios for specific impulse and initial weight will be evaluated since

they are representative of the two types of parameters to be treated. The

distinction is that weight change will occur at a point in the trajectory while-

the specific impulse change is distributed over a region of the trajectory.

This formulation is develope_ for a two-dimensional trajectory which satisfies

a constraint on radius at the en_ of the trajectory. The equations of motion

2-i0
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of the trajectory program inputs, under the condition that thQ mission constraints

remain satisfied. They are computed following a trajectory optimization sequence

before the final guided run is initiated.

_he assumption used is that the trajectory control history is readjusted

in a minimum integral square sense to maintain the constraints as the program

input varies. While this at first glance seems rather arbitra_y, it is

important to recognize that if an optimum trajectory has been obtained before

the exchange ratios are computed, then the assumption used for the control

readjustment is unimportant. This is true because any departure from the

optimum control history _ produces no first order change in the final weight.

The description of the exchange ratio formulation is developed in the

following paragraphs, first for a simplified problem that is used to illustrate

the procedure. The results are then expanded to the form of the complete

expressions used in the optimization program. Although only the fixed final

stage or variable launch weight option of the trajectory progr_n is used by the

system optimization program, exchange ratios will for completeness be derived

for both the variable and fixed final stage options. This is consistent with

the history of their original development and might therefore help to clarify

the approach.

2.3. i Simplified Formulation

Consider first a single-stage vehicle operating outside of the atmosphere.

Exchange ratios for specific impulse and initial weight will be evaluated since

they are representative of the two types of parameters to be treated. The

distinction is that weight change will occur at a point in thQ trajectory while-

the specific impulse change is distributed over a region of tl_e trajectory.

This formulation is developed for a two-dimensional trajectory which satisfies

a constraint on radius at the en_ of the tr_ectory. _ne equations of motion
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and mass flow rate can be written as

T
V

F = _ = _-cos _- gsln7

m

mV

H = r = Vsin7

I = m --

go Isp v

where _ is the angle between the velocity and thrust vectors, and the

definitions of the remaining variables are given in the terminology llst_ p. iv.

Assume that a nominal trajectory meeting terminal conditions has been

determined. One is interested in finding the influence of changes in the

vehicle parameters on payload, assuming that the angle of attack is adJuste_

so that the terminal constraints are still satisfied.

The adJoint differential equations, with the partial deFivatives

evaluated along the nominal trajectory, are

d_V 8G BH

d-V- = "_q_y " _r

_G . _H

dlr _F BG

d_ m

dt
5F _G

v - xy

2-11



Their solution has the following property:

[_SV+Xv 8Y +_ r

t_

5r + _ 5 = 5V + 8y + 8r ÷ -

m . t=tf t=t
o

t _
o

6"q dt [" _ _m _ 8I at (2-Zl)

tf aISPv SPY

The initial _t£ons for these adJoint equations are specifie_ at the time

the stopping parameter is reached, tf. They are fUnctions only of the terminal

constraints an_ the stopping parameter. One separate solution of the ad0oint

equations is required for each terminal constraint and one for the payoff

functio_ mass.

At the initial time, to, the perturbations 8V, By, and 5r are zero.

Furthermore, 81 is constant. Assume radius to be the only terminal eo_-
Spy

straint and let the second subscripts _ and _ indicate that the a_oimt

equations are solved using the initial conditions associated with mass az_

radius, respectively.

Using F_. (2-11) sa_ assuming we are on the nominal trajectory at to,

the expressions for terminal deviations in mass and radius are

t
O

5me x_ 5mo
te

t

6r_- x_ 5.0 ÷ J'°A, 5_at-R, 6Zs_
tf

(2-_)



where

A=-X ---_
v v

and

an_

t
• o

tf v

lmf = lrf = 1.0.

We have assumed a nominal trajectory that meets terminal conditions, i.e.,

6rf - O. In order to maintain this condition in the presence of perturbations

in initial mass and specific impulse, it will be necessary to adjust the

angle of attack, _. The minimum change in _ that will enable the terminal

conditions to be met is found by setting 8_ = _. Substituting 6_ in

(2-m) gi s

where

6mf = km_ 6" 0 - 1_ Yrsp v + CI_

8rf = l_n_ 6m o-.R_ 61spv ÷ CI$_

+

t

tf

and _t ' correspondingly. Solving for C, with the conditloq that 6rf - O,

one obtains _

2-13



"Xm_ 5too +_ 8Isp v ^,

To determine the influence of these perturbations on final m_s, substitute

for 8_ in Bq. (2-12)

8mf = (Xn_ " U_m$) 8mo - (R_ - URn) 8Isp v
(2-1_)

where

U

The coefficients of 6m and of 61 in Eq. (2-14) give the influence of these
o spv

perturbations on final mass, assuming the angle of attack is adjusted to

meet terminal conditions• They are the exchange ratios for m and I •
Q spv

2.3.2 Expanded Formulation

Moving now to the more general form of the exchange ra$io equations

and adopting the terminology used for the PRESTO program, the expresssions

for changes in the terminal constraints may be written.

= A$ 6&at + s, 6T + I AX_ 8x at + sy, _y (2-x5)

tf tf

where

A X =

a

AXII AX21 • . . AXN

AXI 2 AX22 ....

• • • • • •

AXIjc AX2 • . . AXNJc Jc



representing the time derivatives of the partials of final mass a_l each

constraint with respect to the program inputs XI, X2 . . . XN, that have

_istributed effects.

"_i I

AX$ contains all but the first row of AX.

S_ m

• • • • e

- . .
representing the partials of final mass and each constraint with respect to

the program inputs YI, Y2 . . . YN, that have no distributed effects. _$

contains all but the first row of _. The elements of Axare fors_l in em

analagous manner to those of A using

where

AX = _G

-_F BY . . . _F

_G _G • • •

_J _J . . .
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As in the previous example, Eq. (2-15) is solve_ by setting the control

change proportional to its effect on the constraints. Using PRESTO terminology t

ana

-i T
57 = Y $IC

W

where C is an arbitrary array of proportionality constraints, an_ W an_ Y

are the gains. Using these solutions, Eq. (2-15) becameO

67 = . y-i ST
¢

i w"I T



Now write the equation for the change in final mass,

= 5adt + S_8_ + .f.

t_ t2
Am _X.at+_ 6_

Substituting for 5_ a_ 6m

-I

÷

t 1

t2

If we now assume that the distributea parameter changes 5X are constant over

the region considered and regroup the terms, the equation becomes

where

t I

T)= _)

If', in = w-l_at+s_Y'Is e A) w-IA)eat+s)_=1

This equation corresponds directly to Eq. (2-14) in the simplifiea example.

=I

I
2=X?
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At this point we must define the variables for which exchange ratios

are to be cc_puted. These variables are

launch mass ,.
t o

stage Jettison mass m_

stage burn time t

stage vacuum specific impulse Isp -

stage vacuum thrust Tv v

stage nozzle exit area %

The first three variables have non-distributed effects and their exchange

ratios will be of the type defined by vector T in Eq. (2-15). The isst

three parameters have distributed effects and their exchange ratios are

define_ by vector R. More specifically following the program terminology,

we can write

5mf = eo 6m o +>. (eI 6Isp + e2 8Tv

no. of

stages

+ e3 B% + % _mj)+ )_e5 6t

all 1_ut

the final stage

where

and

eoI Ie_ corresponcl to Y2

e5 Y3

e2 correspond to

e3

Notice that the propellant mass is implied by this equation and may be obtained

from the other variables using the relationship given in Eq. (2-1). Also, if
o
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the launch weight is varie_ independently from the other parameters then the

last stage burn time an_ propellant loa_ must vary. This corresponds to the

operation of the fixed launch ass option of the PRESTO program where the

stopping condition determines the propellant and burn time for the final sta_e.

_he partial _erivatives may now be written for the matrlx O.

_F i
_'- = m--cos _ cos x _gn A

V

_F _F

_G

= 0

_G I

_Tv mvSin _ sgn A

_G _G

sPv

0

_H I cos _ sin x

cos 7
A



I@

=
spv

_K _K _K

= 2

go zspv

a6 1
m Im-

_. gozsp.

_m
= 0

Before ei can be compute_, the elements of matrix _ must be gefined.

By direct analogy with the simplified example _I an_ S_2 are the aclJoint

variables for mass evaluated at the time tI at which the mass change occurs.

The remaining parameter in _ is the bur_time # t. Examining conditions at

the eng of a stage

_...2o



and the
matrix is written

n

x ]t o

Jc to
D

_m I ItI

Xmjc JtI

I
J tI

2.3- 3 Constant Launch _ss Mo_e

Exchange ratios in the constant launch mass mc_le of-operation are
1

computed first for the case of constant propellant mass. This i_m_diately

implies a relationship between the remaining propulsion variables IsPv, Tv

and t from Eq. (2-1). When computing the exchange ratios for each of these

variables the other two variables are alternately held fixed. Where the

trajectory program operates in the constant launch mass mode, the exch_

ratios with fixed propellant mass therefore become

1

= + -- = el + e2 _-_v t

% e5 ++.
= el + -_v '= .'_ = el + e2

i.e., in all but the final pewere4 stage.

I
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= e2 + e5 _t

_v Ispv _v Ispv

 ZsPvl

= e5 eI = e5 + e2 _%--

Isp " Isp.

= e5 + gO mp el - e5 _" e2

_mf

- •3
e

In the fixed launch mass mode of operation, the propellant ar_ burn time for

the final stage must vary in the manner defined by the stopping parameter. _3ae

exchange ratios for the propulsion parameters for this stage therefore carry a

somewhat different interpretation. No burn time exchange ratio is _efine_

burn time and propellant mass are always dependent variables. In this case the



the final stage e_ _atlo6 _eeome

_- - %
o

The basic information has alres_y been develope_ to complete the

exchange ratio set for the fixed launch mass mode of operation. Althou@h no

exchange ratios have been d_fined for propellant weight, these may be derived

i_. those _o_ X_v, _ a,a t u._

= el u_'_"p t; = " 'el

.JB
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g.

_tI . _o_L_,5

The propellant mass exchange ratios are not defined for the last stage in this

mode of operation. A complete summary of the exchange ratios for the fixe_

launch mass mode is presented in Table 2-1.

2.3.4 Fixed Final Stage Mo_e

When the trajectory program operates in the fixed final stage option

where launch mass now becomes a dependent variable the constant propellant

mass,exchange ratios derived in the previous section must be modifie_ as

follows

x_._l_ x_._lo° "o
'final

stage

_m0 _mf I +

'final

sta_

4

z-z_



_E RATIOS F0R FIXED IAUNCH MASS )4DrR

Xndependent
Varia3xle

t

%

%

Varia1_S held.

Constant

, , J ,,

m
P

mp, t

Ispv, t

Lower Stages

Mass Partial

Stage

•1 + t e_

e2 +. t el

e
o

e3

%.

goI_
t e2

e I

e2

• o

e3

-1

em
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thus

X_"_'YIfixed = 1 - e° eo
final

stage

The Jettison mass and propellant mass partials in this expression are

zero unless the Jettison mass or propellant mass are the dependent variables.

In that case the partials are e_al to one.

A complete set of exchange ratios is also now available for the final

stage since it is possible to fix the burn time and propellant mass for that

stage when the launch mass becomes the dependent variable. This stage remains

unique, however, in that the burn time derivative e5 does not enter the

relationships. The effect of last stage burn time variations is alrea_ implied

in the e i defined for the fixed launch mass option. A complete _ of

the fixed final stage exchange ratios is presented in Table 2-2.

These are the exchange ratios used in the system optimization program.

2.4 Formulation of Optimization Partials

It is now a straightforward process to form the partial _erivatives

_f _W

and _ that are used in the system optimization program. These derivatives

are written for convenience in terms of the exchange ratios that have alrea_7

2_



Table 2-2

Independent
Varlahle

%

t

"o

5

m

T

EXEHARGE RATIOS FOR FIXED FINAL STAGE 1011

L

Variables held
Constant

rap, I v

I

i

Mass Part_l

L_wer Stages
n i ji I

e + e

Y

e 2-_e5

"i-e*le _ e2)

e* •3

• _ e_

e_'o Is_ v '_

_ ISp v
------eI + i

I t
e

_k t e2 +eo_,

|, i

F_I Staee

e* e.jL

e 1 + e2

_ e'_e2

t. el
e 2+gomp 1

. T

..e ---_--e2. : -

e* • 3
i.

-X

e ,IF
eo
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been deriv_ and the propulsion and Jettison weight I_Lrtials.

_f i_P v _t •

L i

_f

_f

_P _ _t _A

_P BT _t BAe

_T _A

_¢ _¢ _¢

D

_Pr _f _J

_W
i

_W

_W

_W

i

_J
_-_+I

BJ

_p

M

_J

z_8



_f _W

When the optimization partials _ and _ are forme_l, the remai_
,b

_Pr M

system controls are held constant an_ the rows in _ and_ reflect this.

The partials use_ in these expressions will be _efine_ in the follow_

l_re_phs.

The exchange ratios for the fixe_ final stage option derive4 in
Bf

,Section 2.3 can now be use_ for the elements of the matrix E aria for
_f

appearing in Eq. (2-17) for_ . Taking the terms from Table 2-2

the exchange ratio partials become

_f = go

_-_v P,t t

Bf Bmf



The propulsion relationships given in Eq. (2-1) have alreacly been
apt

used to develop some of the partials appearing in the matrix _ . The

remaining elements of this matrix are rather obvious and the complqte

matrix is given below.

m

% o A"

0 0
A

e
0

P

T A
v I eo -_ -_-

T _CF v A
0 v 0 e

CFv _¢ ¢
m

where T and A are defined by Eq. (2-1) and __-T--
v •

mined derivative from Figure 2-2 which defines CF
v

is a numerically aeter-

as a function of ¢.

_he final derivatives to be evaluatedare the Jettison weight

aJ
derivatives, _-_ . Jettison weights are defined for the liquid propellant

launch vehicle study by the following equation. 1

- ÷ oE% ÷ %wl,L

where Ci are inputs and remain constant during a runandWpL is the weight

carried by the stage considered (i.e., nose load). Derivatives are forme_

numerically rather than algebraically so that the equations can readi!ybe

replaced by more complex relationships. For these operations, Tv is replaced

using Eq. (2-1) so that the Jettison weights are expressed directly in terms

I Suggested from an analysis made by J. D. Bird of 'NASA Langley Research Center.
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of the system controls.

J = CT P + CE CFvC* P + CS Wp L

go t

Each stage in the system influences through WpLthe stages below it,

creating a series of cross derivatives for Jettison weight that define

the interstage influences. In the system optimization program these

influences are also defined numerically by differencing all of the stage

j_tison_ights each time a system parameter fs pertnzrbe_.

I@

2.5 Dynamic Pressure Constraint Formulation

An important relationship has been ignored up to this point for the

launch system optimization problems being considered. Usually the launch

environment significantly influences the system design. This in turn

influences performance indirectly through the jettison welghts and directly

through the geometry and its associated aerodynamic characteristics. In

large low acceleration launch systems the weight to drag ratio is high am_

the major environmental feedback is through loads and heating to Jettison

weights. In small high acceleration systems the direct aerodynamic feedback

is proportionately higher and may be as significant as the feedback through

jettison weights.

It would not be very difficult to formulate optimization equations that

would properlyaccommodate these effects. A problem arises however when it

becomes necessary to define the partial derivatives that relate the launch

environment to the Jettison weights and the geometry to the aerodynamics.

Usually these effects are established through a rather involved analytical or

empirical procedure that is cumbersome for the problem at hand.

Z-S2
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The problem can be solved crudely by constraining the launch environment

during the optimization so that the Jettison weight relationships properly

reflect the situation. The environmental constraint can then be adjusted by

a trial and error process and the system re-optlmized with new Jettison weight

relationships that reflect those adjustments until the maximum payload is

determined.

An alternate approach would be to ignore the environmental relationships

during the optimization, use the resulting environment to define new weight

relationships, use the new relationships to run a new optimization, etc. This

method may be divergent and partly for that reason is not considered as

desirable as the first approach. More importantly, however, it is a dead-end

because the mechanism is not developed for accommodating environmental derivatives

should they later become available.

A single environmental constraint that does reflect a major portion of

the environmental feedback is the peak dynamic pressure. This parameter is

therefore used in the following discussion where a formulation is developed

to constrain peak dynamic pressure during the system optimization. The approach

is general in that it is applicable to any environmental factor affecting the

design, whether it be one that is encountered at some point along the trajectory

or one that involves some cumulative effect that is a function of the trajectory

history. The formulation has not been included in the optimization program at

this writing so we have no practical experience with the behavior of the program

with the dynamic pressure constraint included. This could be the subject of

a future study.

For the present formulation the dynamic pressure constraint must reflect

the ability of both the trajectory control program and the vehicle control

program (i.e., the combination of design variables) to adjust peak dynamic

pressure. Another way of stating this is that the vehicle design derivatives

_f _W
and _- must recognize the imposition of a constraint. Enough procrasti-

v..i
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q

nation forces one to the easy method of accomplishing this. Treat the con-

straint in exactly the same fashion as the terminal trajectory constraints.

Since design optimization studies practically do not require the use of all

six terminal constraints provided for in the PRESTO trajectory routine, we

will use one constraint for dynamic pressure. Logically, this means that a

set of a_oint variables will be initialized using the first time point

following peak dynamic pressure on the forward trajectories. The stopping

parameter for this constraint becomes q . It is interesting that the

stopping condition is always q = 0. Following the PRESTO formulation

time for q time for time for

,q ,q q
m_x _ ms_x

This relation says that to first order the peak dynamic pressure point will

mot shift on the time scale with changes in the trajectory controls and that

initialization at q = 0 is equivalent to initialization using the time on

the forward trajectory for q = 0. The initial conditions for the adJoint

variables become

k - V2 _p k -- 0
r 2 _r m

_v " pV k x = 0

X¥ = 0 - kS = 0

0me ad_itlonal precaution must be observed to avoid trouble when the PRESTO

close_ loop formulation is used beyond the qmax point. The q constraint

miss must be set equal to zero in this region.

( z-3 



be introduction of this initialization logic and the incorporation

of the constraint error in the d_ constraint miss list automatically imposes

a peak dynamic pressure constraint during the trajectory shaping process.

Furthermore, the exchange ratio formulation is such that the new constraint

is also reflected in each derivative computed in the trajectory program.

•his in turn means that the constraint is properly reflected in each design

derivative and the process is complete.

When the PRESTO IT trajectory routine is in operation, the procedure

is directly analogous to that used with PRESTO. One constraint is replaced

with peak d_namic pressure. The derivatives _qmax and _qmax required for

by _mi
KS and LS in the PRESTO II control equation

-I

_e Z"I Z"I -
- KST (KS KST) (d#:.s LS dmi)

are formed numerically during the development of the first stage table.

Dynamic pressure is tested at each integration step to detect the first

decrease. A parabolic fit is then used to find qmax and the value is

stored. Differences in the stored qmax values are divided by the kick angle

and launch mass perturbations to determine the derivatives. Only two deriv-

atives are required because qmax is not affected by later control changes.

Finally, a few comments are in order on the extension of the simple

d_rnamic pressure constraint to a more advanced program where the magnitude of qlmx

is to be optimized automatically. Consider the constraint magnitude as a

design variable Just like thrust and propellant load.

J

 -S5
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_o_ri_t__, willbea_i_le__et_Jooto_r_tioeJustl_e
lJ

the derivative with respect to any other constraint. The derivative _ qmax
_J

is an exchange ratio that will also be available. _us, if _ were

known, all the elements necessary to include qmax as a design variable are

known and the optimization could proceed. The new dynamic pressure constraint

will leave us but one short step away from a fUlly-automate_ program that can

be developed as soon as the required structural information/=-----I is

l,O_lavailable.



Section 3.0

OPTIMIZATION STUDY RESULTS

When a new optimization program is developed, it is necessary to

conduct preliminary studies of typical optimization problems to gain

experience in the application of the new program and to identify areas

where the techniques require further improvement. In particular, for this

study we are interested in the application of the system optimization

program to multlple-stage liquid launch vehicle problems. When the study

was planned, it was decided that this experience could be developed by

applying the system optimization program to a selected number of specific

optimization problems. In addition to the objective of testing the program

performance on this type of problem, the final results themselves were of

interest, since they would help to develop a proper feel for the important

parameters to be considered.

As the study progressed it developed that we were somewhat frustrated

in our first objective because the program formulated specifically for this

study proved ineffective for many of the optimization problems considered.

Some solutions moved into regions for which the approximations incorporated

in the high-speed traJectcry optimization routine were inappropriate. When

this was recognized early in the study, we decided to resort to a previous

program formulation that included the full PRESTO trajectory optimization

routine; and the majority of the results discussed in this section were

developed with that program. For the fUture the PRESTO II routine still

carries a strong potential for this type of problem, although some of the

approximations must be modified and considerable experience must be developed

with the application of the PRESTO II trajectory routine to trajectory

optimization problems of the type that will be encountered during the system

optimization process. Extensive experience of this type had already been
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developed with the full PRESTO program prior to its application to this

problem and it was therefore possible to successfully complete most of the

optimization case matrix without further modification.

In the following sections the actual vehicle-mission matrix used

during the optimization study is described. The results for each case in

the matrix are discussed in detail and interpreted in terms of their

implications for liquid launch system design problems.

3.1 Launch Vehicle-Mission Matrix

A matrix of ten launch vehicle mission combinations was run on the

system optimization program to determine the combination of system controls

that produced maximum payload for a fixed launch weight. The complete

matrix is defined in Table 3-I.

Two low altitude circular orbit missions were selected to permit

investigation of the relationships between the ascent gravity loss and the

stage thrust levels or burn times. Coast periods were not used during

ascent to orbit because we wished to maximize the influence of the mission

requirements on the launch system characteristics. Experience has shown

that system characteristics are not as sensitive to orbit altitude when

coasts are permitted. Furthermore, the systems will optimize with high

dynamic pressure, short burn time trajectories that are not consistent with

the current weight equations. Launch was assumed to be at 90 degrees

azimuth from the Atlantic Missile Range. Both two- and three-stage systems

have been included to provide for the information on the relationships

between velocity losses and vehicle characteristics. The vehicle parameters

that vary between the cases in this matrix are the Jettison weight constants

an_ the propulsion system specific impulse. In the case of the three-stage

systems, the vehicle parameter variables for the matrix have been restricted
t
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MISSION-VERTCLE MATRIX FOR

LI_ID _ V_ICLE OPTIMIZATION STUDY

1

Circular Orbit

Mission Altitude

(nautical miles,)

100

Vacuum Specific Impulse

(seconds)

stage I Stage 2 Stage 3

Jettison Weight Factors

Tanks _hrust Interstage

3oo _5 _5 .05 .0_ .008

2 _o0 3oo _5 _5 .05 .oa .008

3 100 _5 _5 _5 .05 ._ .008

4 4oo _5 _5 _5 .05 ._ .008

i00 _5 _5 •o5 .o_ .008

6

7

8

9

10

_oo

100

_5 _a5

lOO _5 _5 _5

•o5 .ffa .008

.05 st@ ._
•05 _

•05 stgl
.05 stg2 .02
.o75 st_3

loo _5 _5 _5 .o5

lOO _5 _5 _5 .05

•03 sty1
.o¢ st_
.o_ s_g3

.O_ Stgl

.o_ s_g_

.03 stg3

.008

.008

.008

.008
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to the first and thir_l stages. It is felt that these variables will

demonstrate the extremes of the effects associated with these parameters.

It is also interesting to investigate the influences of engine weights on

'the optimum thrust levels. The last two cases in the matrix are designed

to demonstrate this, again for stages one and three.

The design parameters or system controls that are permitted to vary

during the optimization process are the stage propellant loads and burn

times. The propulsion units were assumed to deliver a constant vacuum

specific impulse and the engine performance variation with altitude was

datermlned for the following fixed nozzle expansion ratios that remained

constant during the optimization process. Under these assumptions the

Stage Nozzle Expansion Ratio - s

Ispv = 300 IsPv = 425

1 8.6 3h..2

2 - 3 .2

3 -

optimization of propellant loads and burn times is equivalent to the

optimization of propellant loads and thrust levels. This is evident from

the propulsion equations defined in Section 2. For all cases the system

sizing constraint was a launch weight of 650,000 lbs. When the study was

initiated, no additional vehicle constraints were considered although in

the process of determining solutions for the first few cases in the matrix

sume trends were encountered that forced us to impose a constraint on the

minimum burn time that would be permitted during first stage operation.



.

S.2 Discussion of Results

In the following sections the evaluation techniques used to determine

the validity of the results produced by the optimization program are

described and a detailed discussion is presented of the optimization history

for each case In the vehicle mission matrix described in the previous

sectiOn. In addltlon_ an interpretation of the trends indicated by the final

results obtained for each case is included.

3.2.1 Evkluation Techniques

With any gradient process, it seems to be difficult to determine

when the procedure has converged to an acceptable result. For the constraints

this represents no particular problem because the constraint miss is easily

ccwputed and is output at each iteration of the gradient procedure. For

the pso_fT the ewaluation is extremely difficult and there are good reasons

why cOnvergence may not be achieved on a typical optimization run.

The difficulties normally are traceable to three problem areas.

l_rst_ the relationship between the step size and the non-linearity of the

problem is important. With the present formulation 3 for example, it is

easy to enter a situation where the vehicle variables will oscillate during

the optimization process. Second_ the weighting factors or gains (_i) used in

the vehicle gradient loop must be in the correct ratio to avoid a situation

where some variables creep and others oscillate. Finally, the trajectory

opti_zation process itself must be carefully examined to assure that

adequate cOnvergence has been achieved in the trajectory and exchange ratio

In many cases the evaluation is based on Jud6ment and experience with

si_Ll_ problems. It has been possible_ however_ to develop several indicators

thmt h_ve proved helpful in evaluating results from the system optimization
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program.

Five types of parameters are particularly useful and their elements

have been output at each step of the system optimization process.

1. _he chan6es in payoff (the payload gain asked, 8f) and the

constraint (the change in launch wei6ht_ 8W) from the previous

iteration.

2. The changes in the vehicle variables (the burn times, t, and

the propellant loads, P) from the previous iteration.

3. The optimization derivatives_ --_- !

_. The grad/ent deterimant, D.

5- _he angle (e) between the constraint gradient and the payoff

gradXent vectors.

All of these variables approach zero as the vehicle optimization

process proceeds. The manner in which this occurs provides the important

feel necessary for a proper assessment of the convergence. The trajectory

and exchan6e ratio loop may be assessed from the normal trajectory program

output that is also available at each step Of the vehicle optimization

]proGess.

The first two types of parameters listed above are rather obvious

and are normally available in most gradient problems. The payload gain

asked is computed in the vehicle optimization program from Eq. (2-9). This

computation is designed to produce a constant step size rather than the

usual increasing step size associated with a fixed 8f- As the optimum is

approached the 8f would therefore be expected to approach zero and is in

fact used to terminate the optimization sequence for most cases considered

in this study. _is type of termination was used when the 8f became less

34



The optimization derivatives are computed by the system optimization

program for output only and we think they are an important evaluation aid.

These parameters are the derivatives of the payoff with respect to the

system controls under the condition that the constraint remains fixed. A

gradient formed from these derivatives would be the gradient of the payoff

along a surface for a constant value of the constraint. At the optimum

each of these derivatives must approach zero unless the corresponding system

control is constrained for some reason.

The determinant_ D_ is computed in the process of determining the

propor_io_ity constants (Zf and Zv) of the vehicle gradient process.

The nature of the gradient solution is such that a singularity is encountered

at the optinn,,n. Mathematically, this is evidenced by the determinant

approaching zero and this characteristic can be used to identify the approach

of convergence in the vehicle gradient loop.

At the optimum the angle_ 8 • between the payoff gradient and

constraint gradient vectors must also approach zero. This -_y be deduced

by reasoning that the constraint gradient vector is perpendicular to the

surface along which the constraint is satisfied. At the optimum the payoff

gradient vector must also be perpendicular to the surface along which the

constraint is satisfied, since further motiou on the constraint surface

will produce no improvement in the payoff. This angle can be computed

rather easily from the following expression:

cos 0 =

where _W is the dot product of the two vectors and the square root is the

product of their magnitudes.

Some co_nts are in order regarding the interpre_tion of these

parameters. It is important to recognize that the magnitudes of each

parameter are function_ of the input gain constants, _i' 8f is also a

D
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f_nctiou of the input value of the sum of the squares of the system control

changes (N) and they establish the step size. Thus 2 in assessing the

validity of the convergence the important thing to examine is the change

that occurred in these parameters during a run rather than their ma6nitudes

at the completion of a run. Typically_ one or more orders of magnitude

reduction in each parameter is realized. Some assessment of the ma@nitudes

of the optimizatiou derivatives can be accomplished by compariug the changes

occurring in the vehicle variables with those occurring in the derivatives.

If small variable changes reverse the sign of a derivative or greatly

influence its magnitude t proximity to the optimum is indicated. A slowly

changing derivative with large parameter changes indicates convergence has

not been realized. The linearity of the system cau be assessed by comparin6

the requested 8f with that actually achieved on a particular iteration.

When the actual and realized values are similar and the gain is achieved

with relatively small system control changes, the run is usually far from

convergence. If the sign of cos e oscillates between iterations but the

magnitude of the angle is close to zero, the program is operating back and

forth along the constraint surface near the maximum payload.

3.2.2 Vehicle Mission Matrix Case Histories

In this section the details of each launch vehicle optimization run

in the ten-case vehicle mission matrix will be discussed. The results are

summarized in Tables 3-2 thru 3-11. For the most part the cases were

completed in the order described and it is evident from the number of

iterations required that we beuefited from the experience gained from the

earlier cases.

Before entering the discussion for each case, it must be understood

that the results shown represent output from two different optimization

programs. One program contains only the I_ESTO trajectory formulation which
v
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formed the basis for most of the cases run. The other program contained
a

the hlgh-speed PRESTO II formulation which was used at the begiunlng of

the study until dlfflculltles were encountered with the trajectory program

approximations. In addition 2 four different types of system optimization

program terminations have been used: (I) number of iterations; (2) total

run time; (3) total output page count; (4) minimum 5f. Each of these

terminations was encountered frequently during this study.

Case 1

The iteration sequence for Case i is preseuted in Table 3-2. Teu

computer passes were required _o complete this case. The first pass was

made with the PRESTO II version of the program. It was terminated on the

number of iterations and exhibited gross changes in the system characteristics

from the original nominal estimates.

It is evident that the original combination of system controls used

Wsa far from the optimum since the program was able to gain approximately

the amount of payload asked at each iteration. This process was still

contlnttlng when the run terminated after thirteen iterations.
J

When the PRESTO II formulation became operational we resumed the

coNputatlon of this case and the next six iterations shown were computed

with the hi6h-speed program. The system optimization trend continued as"

the routine consistently removed propellant from the low specific impulse

first stage and maintained the first s_e thrust with correspond/ng

reductions in the burn time. This second pass actually terminated through

& failure of the trajectory op_L_Ization program to complete the trajectory

for the seventh iteration. The reason was that the entire combination of

system controls had become radical during the optimization process as the

program attempted to eliminate the low specific impulse stage.

Since we were already violatlng the vacuum assumption for second

stage used with PRESTO II, it was decided to stop the processj return to the

3-9



eighth iteration of the first pass where the environment at second stage

ignition seemed compatible with the PRESTO II assumptions_ and constrain

the first stage burn time in an attempt to prevent atmospheric operation

of the second stage. When this case was re-submltted we again experienced

difficulty because the program still attempted to remove first stage propellant

with the burn time constraint imposed, and the resulting rapid change in

launch thrust to weight ratio upset the trajectory optimization loop to

the degree that the trajectory program failed to optimize properly on the

first iteration.

At this point we modified the program so that the time for launch

kick-over was re-computed at the beginning of each iteration to maintain

a constant velocity at kick-over. The run was again submitted and the

program continued to remove propellant from stage i.

The first stage propellant loading was then constrained to produce

an initial launch thrust to weight ratio minimum of about 1.25 and the run

was re-submitted with the PRESTO 77 formulation. This run failed to gain

payload. We were now operating in a region where there was little feel

for the PRESTO II behavior and the program no longer achieved successful

optimization runs during the trajectory shaping loop.

Rather than experiment further with PRESTO 77 we resorted to a

series of three runs with the original PRESTO formulation and continued to

constrain the first stage burn time and propellant load. These cases

produced what appear to be a satisfactory optimum which is shown at the

bottom of the first page of Table 3-2. However the first stage propellant

optimization derivatives now showed a positive sign which indicated that

the constraint on first stage propellant loading should be released. This

was exactly the reverse of the situation with the PRESTO II operation. The

difference is a reflection of the absence of atmospheric effects to degrade

the thrust and introduce drag in the second stage in the PRESTO II formulation.

The first stage propellant constraint was therefore removed and the case was
|
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completed with two additional passes with the full PRESTO t_ opttmiz_tion

routine.

Before leaving this case it is interesting to examine the situation

at the point before the first stage burn time constraint was imposed. This

corresponds to the sixth iteration shown for pass two. On this trajectory

the maximum dyuamic pressure encountered was 11,152 ibs/sq, ft at a flight

time of approximately 102 seconds, well into stage 2 operations. Even at

Stage 3 ignition the dynamic pressure was 250 lbs/sq ft. The velocity

contribution from first stage under these conditions was 76_ ft/sec and

staging occurred subsonically at an altitude of 3,850 feet. Thus, although

this case apparently produced the maximum payload, 55,276 pounds, it is

obvious that the result is fictitious because the structural eq_tious

certainly do not reflect the euviroument actually experienced, and the

second stage drag and thrust losses are not included.

Case 2
J

This case, summarized in Table 3-3, was started with approximately

the same combination of launch system parameters that was used to start

Case I. The full PRESTO trajectory routine was used from the beginning

because we anticipated from our experience with Case i that the optimization

would tend to eliminate the low specific impulse first stage. By the end

of the second pass it was apparent that we were again encountering a severe

environment at second stage ignition and therefore the burn time constraint

used on the previous case was imposed.

When the computation was resumed, oscillations were encountered in

several of the system parameters and the run had to be re-submltted after

the first pass with adjusted optimization gains to achieve satisfactory

convergence. These last two passes have been selected to illustrate the

convergence process. Figure 3-i shows a summary of the history of the

optimization derivatives for this case, beginning with the third pass.
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Recall that each of these derivatives approaches zero as the optimum

combination of system parameters is approached. It is apparent that the

gain change introduced half-way through the process considerably improved

the situation and by the end of the run we had achieved at least an order

of magnitude reduction in each of the optimization derivatives. The history

of payload and launch weight during this process is shown in the lower

curve of this figure.

Before the first stage burn time constraint was imposed t the optimization

routine had reduced the first stage size to the point where the dynamic

•pressure at separation was 1670 ibs/sq ft. Separation was occurring at an

altitude of 41_000 feet and a velocity of 2457 ft/sec. Both the first

sta6e propellant load and burn time derivatives at these conditions indicated

that the process would continue to reduce the staging velocity if the burn

time constraint were not imposed.

This case was started with the PRESTO II formulation because, with

equal specific impulse for each stage_ the vacuum trajectory approximations

in the upper stages were expected to be adequate. The result shown in

Table 3-4 from the first pass was deceiving. After a review of the evaluation

criteria it was decided that the run had developed properly. Each of the

opt_unizatlon derivatives had reduced by close to an order of magnitude.

The sensitivities of the derivatives to changes in the system parameters

indicated that only minor parameter changes would drive the derivatives to

zero.

It was when we later compared the optimum system parameters with

the remaining cases that this result became suspicious. The run was later

re-submitted with the full PRESTO formulation and new gains. On the second

pass propellant was transferred from the first stage to the third stage and

& substantial reduction in each of the stage burn times was introduced. None
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of the ew_uation criterion indicated that this was possible after the first

pus.

Case
i

The first three passes for this case t shown in Table 3-5, used the

PRESTO IX formulation. An exa_nation of the PRESTO II trajectory output

revealed that major trajectory control adjustments were being introduced

on the f_na_ g_e_ run. _s £n_ca_e_ _ _n_ _ it t-r_-_t_

approximation was inadequate in the latter part of the ascent trajectory.

Rather than experiment with the trajectory program inputs, we decided to

proceed with the PRESTO formulation and three additional passes were completed.

After the first pass an optimization gain change was introduced to reduce

oscillations that were developing in some system controls. _he last pass

was initiated with a reduced step size because we were still experiencing

difficulties with these oscillations.

This case, shown in Table 3-6, was completed in a single pass on

PRESTO II. The convergence was deemed satisfactory although the second

stage burn time derivative indicates that there may he some room for payloe_

improvement through a reduction in the second sta_e burn time.

o

Case 6

Results for this case are summarized in Table 3-7- The nominaX

system parameter cokbination is similar to that used for Case _. When this

case was started we had decided to continue with the full PRESTO trajectory

optimization routine rather than experiment further with the PRESTO XX

rotrtineo

On the first pass for Case 6 oscillations were encountered in both

the first and second stage propellant loads. This is characteristic of a
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ri_e-type situ_tion where the quantities pro_u_ing _he major payload

increases are the slowly increasing burn times. The second stage propellant

load gain was reduced but the run continued to oscillate. Both burn time

gains were then increased and we encountered an oscillation in the first

sta_e burn time. Two more _in adjustments were required before satisfactory

convergence was achieved. Notice that the total change in second stage burn

time was about 320 seconds during the entire optimization sequence. This

radical increase in burn time is consistent with the increase in mission

altitude.

Case 7

Three passes with the fUll PRESTO trajectory optimization routine were

required to complete this case which is sun_arized in Table 3-8. The nominal

system characteristics used were similar to those determined by the first

pass for Case 3 since it was not apparent that Case 3 had not properly

converged at the time Case 7 was initiated. A large oscillation in the

second stage burn time was encountered and the run was re-submitted with

the burn time gain reduced. A second gain adjustment was required before

the convergence was considered satisfactory.

Case 8

This case shown in Table 3-9, was also started with nominal system

parameters close to those determined by the first pass in Case 3- Only two

Passes were required and no gain adjustments were considered necessary to

achieve satisfactory convergence. The first Pass terminated on maximum

cc_pmter time and the case was simply resubmitted to complete the run.

ca_ 9

This case, shown in Table 3-io, was completed in two Passes, again

starting from nce_knal system characteristics corresponding to the first pass
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from Case 3- A gain change was then introduced to accelerate the optimization

process because the routine seemed to be creeping through a series of

successful iterations that were achieving payload gains approxin_tely as

requested.

Case i0

This case, shown in Table 3-11, was also initiated with nominal

system parameters corresponding to those of Case 3. It _as completed in

two passes with the full PRESTO trajectory optimization routine. For the

second1 pass the burn time gains were increased to speed up the convergence

process_ as the behavior seemed similar to that experienced on the first

pass for Case 9-

S.2.3 Interpretation of Results

Two of the optimization indicators, the angle between the constraint

and payoff gradients, 8 and the Determinants D, are shown in Table 3-12,

where results from the nominal runs and the final optimized runs are compared.

Thl8 table also includes the payloads for these cases and an additional

paran_ter_ the ideal velocity I that can be used to establish a feel for

the relationship between the launch system characteristics and the trajectory.

For the first two cases it is evident that the trajectory and the

system are closely related. The reduction iu ideal velocity was near 2200

feet per second for Case i and almost 4000 feet per second for case 2. In

Case 2 in particular the large velocity change was the result of a considerable

extension in the total system burn time which permitted a more efficient

ascent maneuver to the high altitude 400 nautical mile orbit.

Smaller velocity reductions are evident for Cases 5, 8 and i0.

_e large gain for Case 6 again was achieved through a major burn time increase



Case No.
Total Ideal

Velocity -_ fps

Angle Between
Constraint & Payoff

Gradients _ deg

1 nominal

2 35,010

31,160

3 nominal 29,255

28,255

4 nominal

final
32,230

29,720

5 nominal 28,500

28,330

6 nominal 33,730

30,570

53,172

5_,238

1.9

-9

9 nominal
final

28,110

28,_0

51,662

52,834

i0 nominal 1.5
.5

Determinant

.000002

.007170

.00000_

.oo_93o

.ooooz8

.oooo35

.000001

.003280

.000001

.000051

.000007

.ooz950

.000002

.OOOO3O

.000002
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for the ascent to tMe high aXtit_le orbit.

When Jetison weight increases were introduced in Cases 7 and 9 the

velocity losses in the optimum system were actually greater than those for

the nominal. In these cases the solution tendea to a less efficient trajectory

in order to minimize the influence of the increased Jettison weight.

Generally s however_ these numbers indicate that it would be inapproprlate

to attempt to optimize a launch system with fixed ideal velocity requlrements

__ the _ _iat_onsh_p between the system characteristics and the

velocity losses is likely to overshadow many of the influences of the

system optimization itself. Even for the optimum systems there is a considerable

variation in total ideal velocity requirements although the major contributor

to this appears to be the variation in first stage specific impulse. The

variation in velocity requirements between the 100 nautical mile orbit

cases is at least as great as that between i00 and 400 nautical mile missions.

The trajectory variables from the final shaped trajectories for each

case _ sun_arize_ in Table 3-13. It is interesting that the maximum

dynamic pressure values encountered are significantly higher than tho6e

normally experienced by existing liquid propellant orbital launch vehicles.

Current launch systems typically operate with peak dynamic pressure values

ranging from 500 to IOOO Ibs per square foot.

The first staging velocities for Cases 1 and 2 are extremely low even

with the first stage burn time constraine_ to approximately 70 seconds. The

sta_ing dynamic pressure levels for these cases would be unacceptable for

most liquid launch vehicle control systems although it is probably feasible

to design control systems to accept this environment.

The increase in mission altitude between Cases 1 and 2 produced little

effect on the atmospheric portion of the trajectory.

When the high specific impulse first stage was introduced in Cases 3

and _ the staging environment for the optimum system was much more reasonable
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although the peak dynamic pressure values for these cases were nearly twice

those for low specific impulse cases. These systems optimized at much

higher launch thrust to weight ratios than those for Cases i and 2 and the first

stage velocity addition became a significant portion of the total.

When the Jettison weight increases were introauced in first stage in

Cases 7 and 9 the first stage velocity contribution reduced substantially.

Increasing atmospheric effects at the beginning of second stage were

undoubtedly responsible for the increase in the ideal velocity requirements

for these cases. When the third stage Jetison weight was increased in Cases

8 and lO only a minor increase in the first stage velocity contribution was

evident. Most of the adjustment came through a substantial increase in the

velocity contributed by the second stage for these cases and slight improve-

ments were noted in the total ideal velocity requirements.

The system parameters and payloads determined for the optimized

vehicles are smmmrized in Table 3-14. The mission altitude influence is

apparent when cases 1 and 2 or cases 3 and 4 are compared. The primary

effect of an increase in the mission altitude from i00 to 400 nm is a

substantial increase in the burn time of the final stage. There is also a

tendency _o shift propellant from the upper stages to the first stage.

Secondary influences are increases in the first stage thrust levels and

second stage burn times. The large burn time increase helps to reduce the

losses associated with a direct ascent to the 400 nm altitude. For a given

stage the time can_ of course, be extended by either reducing the thrust or

increasing the amount of propellant. It is clear that the second alternative

would not be as attractive because the launch weight is constrained. An

increase in propellant in one stage therefore would mean a reduction in

propellant in another stage and the net change in total burn time would be

small. If the thrust is reduced to extend the burn time_ it is also clear

that this should occur in the upper stages where the flight path angles are

lower and the rate of gravity loss is less. Even here the gravity loss may
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become excessive and propellant may therefore be moved to the lower stages.

When the first stage burn time is constrained as in cases 1 and 21 this

propellant shift nmmt produce a thrust increase. Notice s however s that the

thrust increase was also evident in case 4. The reason for this is not

presently clear although the increase may be an attempt to reduce the gravity

loss on a steepened first stage trajectory. __ ___

The influence of specific impulse in the first stage can be examined

by comparing cases 1 and 3 or cases 2 and 4. The major changes associated

with an increase in specific impulse are a shift in propellant to stage

one and an increase in the stage one burn times. In fact when the first

stage burn time constraint is not imposed on the low specific impulse stages

the burn time is reduced until staging occurs well into the atmosphere. This s

of course s violates the PRESTO II limitations. Even when the constraint

was imposed on burn time the program removed propellant from first stage

until staging was again occurring in the atmosphere and the launch thrust to

weight ratio was extremely low. It was not until the complete PRESTO

routine was used that the trend was reversed and more reasonable launch

thrust to weight ratios were realized. If the burn time constraint were

removed s it is likely that the program either would attempt to eliminate

the first _ta_e entirely or would require staging w@ll into the atmosphere

in a high d_nic pressure environment.

The comparison between cases 3 and 5 shows the influence of the number

of stages. The major trends here are the increase in size of the first

stage_ the reduction in second stage thrust s and the reduction in total

burn time for the vehicle. Notice that the payload of the two stage vehicle

iS only about 3% lower than that of the three stage vehicle. The compromise

reached on the gravity loss is between the requirement for a reasonable

thrust to weight ratio at the beginning of sta6e 2 and the proper burn time

for direct ascent to i00 nm. Since the two stage system can have only one

thrust level change s the second stage thrust to weight ratio is reduced but
I
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the total burn time is also redu@ed.

The results from cases 7 thru 10 show the effect of changes in the inert

weight factors. Case 3 will be used as the standard of comparison for each.

The increased first stage tank weight factor introduced in Case 7

reduced the optimum propellant loading and burn time for first stage. _e

propellant was moved to the upper stages to maintain the fixed launch weight

constraint and a slight reduction in total burn time was experienced. Apparently

_ha larger upper stages require a different _r_ty loss compromise tha_

produces higher thrust levels and a shortening of the overall burn time. The

net payload loss from case 3 is 1800 lb. which compares with an expected

loss of nearly 2200 lb. for no reoptimization (the 2200 lb. estimate is

derived from a procedure that uses the exchange ratio for first stage inert

weight and the launch weight correction derivative).

Case 8 shows the influence of the third stage tank weight slope. A

large reduction in third stage propellant load and a slight reduction in T/W

accompanied this change. For the same reason as G_se 7_ the opposite trend

(an increase) in total burn time is evident. The net payload loss is 823

lb. compared with an estimate of approximately 900 lb. for no reoptimization.

Cases 9 and i0 show the influence of the propulsion system weights.

An increase in the first stage propulsion weight factor produced a reduction

in both loading and burn time in C_se 9. As expected t these changes also.

reduced the optimum thrust. A6ain_ the associated increase in upper stage

sizes resulted in a slight decrease in total burn time. In Case 9t the

payload loss was 3201 lb. compared with 3810 ib expected without reoptlm_-

zation. In Case lO t the third stage loading and thrust were significantly

reduced by the increased propulsion weight factor. The total burn time

increase with reduced upper stage size is again evident. The payload loss

was 471 lb. compared with about 500 lb. expected without reoptimtzation.

m. . ,
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Section 4.0

CONVERGENCE S_/DY

The system optimization procedure discussed in the previous sections

frequently encounters difficulty when ther@ are strong interrelationships

betwe°en the various system controls considered. These problems are readily

apparent from the results presented in the previous sections and similar

behavior was evident when the techniques were applied to optimization

problems for large solid propellant boosters_ The symptom is usually oscilla-

tion in some system controls while others slowly creep towards the optimum

values.

Potentially, many different techniques are available which offer the

possibility of resolving some of these difficulties. However, with the full

optimization problem it becomes an expensive procedure to test the validity

of the various schemes that might be used.

In this section an approach is developed for a simplified optimization

program that can simulate the gradient process economically. Model problems

are designed to present typical situations that produce problems similar to
r

those encountered with the full vehicl_ optimization routine. A variety of
I

modifications to the basic vehicle optimization routine are explored and

tested on the simple program _ compare the behavior with the original routine.

Finally, a brief systematic gains study is described and one of the routines

tested on the simplified program is demonstrated on the full system optimi-

zation program.

4.1 Simplified Hill Climber Routine

The process normally used by the launch system optimization program to

define the payload and launch weight and the derivatives u_ those parameters



with respect to the system controls has been simulate_ with a simple

analytical model. The optimization problem is reduced to one involving

two control variables so that the payoff function may be conveniently

representod as a hill that is readily describod by a series of contour

lines on a two-dimensional plot. The hill is define_ analytically so that

the payoff and its derivatives can rapidly be determined as a function of

the two controls. This formulation presents a simple problem with more than

one degree of optimization freedom; that is, two controls and one payoff.

An additional model has been defined through the introduction of a second

payoff quantity to represent a constraint. This model presents a problem

with one degree of optimization freedom; that is, two controls, one payoff,

one constraint.

The original plan was to permit arbitrary fourth order polynomial

representations of the payoff and constraint surfaces. The hills were to

be defined through an input grid of payoff and constraint values. A least

squares fit was then to be designed to define the coefficients of the fourth

order polynomial that most nearly approximated the payoff and constraint

hill shapes desired. An automatic contour routine was to be added to pre-

pare contour derivatives of the hills so that their shape coul_ be verifie_

before problems were run.

In practice, it was determined that it was possible to simulate the

convergence difficulties associated with the system optimization program

without resorting to complicated hill shapes. Simple second order hills of

the correct proportion proved adequate. Consequently, the fourth order

polynomial and least squares fit routines were developed but were not used

for the problems considered. These routines will be available for future

studies should the need arise. The automatic contour routine development

was not completed and additional work would be required to bring this

routine to operational status.



I@ A family of elliptic paraboloids was selected for the payoff hill

shapes for the convergence studies to take advantage of their simple analytic

formulations. Three aspect ratios s l:l_ 2:1 and 5:1_ have been used to

demonstrate the variation in behavior of various optimization procedures with

changes in the symmetry of the l_aYoff hill. The 5:1 parabolol_s are

sufficiently extended to produce typical ridge behavior with the nor_

gradient routine that is used in the optimization program. On this type

of elongated hill the path tends to oscillate back and forth across the

ridge while creeping towards the top of the hill. This characteristic

proved to be a vexing problem that has yet to be consistently solved.

The paraboloid shape was also used as a constraint for problems

where both a payoff and constraint were considered. The l:l aspect ratio

was used for most constraint situations; however_ isolated cases were run

with a 5:1 aspect ratio on the constraint hill. It was important to keep

the constraint non linear because the gradient procedure can follow any

surface with a constant slope exactly and such motion would appear as a

straight line on a simplified model.

In the following sections the linear optimization routine_ automatic

gain selection routines and some non-linear techniques are demonstrated

first for payoff only problems. The behavior of some of the routines is

also shown for the more difficult payoff hills with a constraint imposed.

4.1.1 Linear Optimization Routine

The operation of the standard linear optimization routine on the l:l

aspect ratio paraboloid is shown in Figure 4-1. This case is included to

demonstrate the behavior of the step size selection procedure since the

routine naturally f'ollows a constant direction ascent on this hi_. The

process begins at point 1 in the figure and proceeds with a succession of

payoff improvements at constant step size to point 4. Since the optisa_
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has been passed at this point the direction reverses and the routine

experiences a succession of payoff losses beginning vlth point 5. After

each loss the step size is halved by halving the parameter N used in the

equation for payoff improvements. The process was terminated at point 7.

Figure 4-2 shows the behavior of the linear routine on the 2:1 aspect

ratio paraboloid. Again the constant step size operation is evident until

the path recrosses the ridge at point 5. Here the halving process begins

and a minor oscillation develops before the calculation approaches the

optimum at point 12.

_R_eu the same routine is operated on the 5:1 paraboloid the situation

deterioratesmarkedly as shown in Figure 4-3. On this path we were fortunate

in experiencing a failure at point 7 and the heaving process resulted in a

position almost exactly on the ridge at point 8. This good fortune vas not

su_ictent, however_ to prevent the oscillation from resuming and the routine

continued to oscillate until the run _as terminated still some distance from

the optimum. Figures _-4 and 4-5 shov that the same oscillatory situation

develops regardless of the starting condition used.

The orientation of the hill with respect to the control axes has .....

little effect on the behavior of the linear optimization routine. _ Figure

4-6 sho_s that the b_havior of the routine is essentially the same _ on the

5:1 paraboloid when the direction of the elongated axis i_ skewed At an

angle of 45 degrees to each control axis.

H_ving es_lished e_ a reference the behavior of a routine identical

to that used for the fu_ optimization program we will nov proceed with the

iuvew_iou of modifications designed to circumvent the problems demoustrate_

In this section.

Optimization Gain Section

Since our experience vith the more general system optimization problem
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developed some feel for the influence of the optimization gain constants

(_i), it was natural to investigate improved convergence routines that

automatically adjust those constants during the run. Two automatic gain

selection techniques were evaluated with the simplified hill climber routine.

Both techniques used the history of the payoff derivatives to determine the

gains for the next step. Figure 4-7 shows the logic for these two approaches.

It is evident that the only difference between the two techniques is that the

second technique modifies the gains on both failures and successes, whereas

the f_rst technique continues w_th the same gains fol_owlug a fa_lure.

routines halve the step size using the parameter, N, which represents the

square root of the sum of the squares of the control changes.

The behavior of the M_d i gain selection routine on the

5:1 par_boloid is shown in Figure 4-8. This concept proved extremely

effective with this type of payoff hill t reaching the cutoff condition

at the maxim_n value of the payoff parameter in ten steps. Recall that the

standard optimization routine discussed above required a large number of

steps, exhibited a creeping oscillation 3 and did not reach the optimum

before the run was terminated.

Tracing the operation of the gain selection procedure, at point 2

in Figure 4-8, both gains were doubled. At point 3 the X control gain was

doubled and at point 7 the X gain was again doubled and the Y gain was

halved. The X gain was doubled for a third time at Point 8 and the Y gain

was halved at point 9- At points 4, 5_ and 6 and at point I0 the gains

remained fixed but the step size was halved.

The behavior of the M_ 1 routine on thls same hill with a differen_

starting condition is shown in Figure 4-9. Again the routine is successful

in moving to the optimum in less than ten steps.

After examining the results achieved with this gain selection technique,

we decided to extend the same gain selection procedure to the failure loop

_-ii
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as shown in Figure k-7. The operation of this Mod 4 routine on the 5:1

paraboloid is shown in Figure 4-10. The new routine was even more successful

and reached the maximum payoff condition in eight steps.

The Mod 4 routine reaches the _ more rapidly than the Mod i

routine because it also takes advantage of information gained from a

failure. Tracing the operation of this Mod 4 routine in Figure _-I0,

the procedure _as identical to the Mod 1 routine to point 3. At point 4

both gains were halved, in addition to the step size parameter, N; and at

point 5 the X gain was doubled and the Y gain was halved along with the step

size parameter. At point 6 the X gain was again doubled_ at point 7 the Y

gain was halved, and at point 8 both gains were halved along with the step

size parameter.

The results achieved with these simple gain selection techniques

were extremely encouraging and indicate that substantial improvements in

the behavior of a gradient routine can be achieved with these methods on

elongated payoff hills. At first glance they represent a promising solution

for the difficulty with the ridse. However, the situation is not quite

that simple. If we turn now to the hill with the elongated axis skewed at

_5 degrees l to the two control axes and apply the Mod 1 and Mod 4 gain

selection routines to this problem, their behavior is not substantially

better than that shown for the standard routine in Figure 4-6. _ne _ 1

operation is shown in Figure 4.11 and the Mod 4 operation is shown iu Figure

4-12. Neither of these routines satisfactorily solves the ridge problem

with the skewed hill.

This might be expected because it is not possible to emphasize motion

along the ridge by emphasizing one or the other of the control variables.

Am appropriate gain selection technique for the problem with the skeve_

ridge must emphasize a combined motion in the_c_tr_is X and Y, in the direction

along the ridge_ and de-emphasize combinations of X and Y motion perpendicular

to the ridge. To date, we have been unable to synthesize techniques for this
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type of gain selection that are sufficiently geners_ for application to the

complete system optimization problem. Unfortunately, this problem is not

fictitious and the type of operation where more than one control oscillate_,

indicating skewed-ri_e type behavior, was frequently encountered during the

system optimization study disCusse_ in the previous section.

_.i.3 Non-linear Techniques

Since we were unable to achieve satisfactory solutions to the problem

of the skewed elongated ridge with automatic gain selection procedures_ it

was decided that it might be appropriate to examine some higher order

procedures. Two non-linear techniques were investigated with the simplified

hill climber routine.

The first was what might be called a uni-directional approach. The

idea is to move in the direction determined initially by the local gradient

until a maximum payoff is reached. A new gradient calculation is then

performed and the routine moves in that direction until the payoff again

maximizes _ etc.

The second technique is a derivative averaging process. In this

procedure the gradient step is first computed using the derivatives at the

current point. That step is taken and then the derivatives at the new

point are average d with those from the previous point and the step is re-

computed. The procedure is repeated until the average derivatives determined

agree within some specified tolerance with those used for the step itself.

Both of these techniques show promise for future application to the

full system optimization problem and their behavior with the simple hill

"_ climber routine will "be discussed iu the following paragraphs.

___.

In Figure 4-13, the parabolic fit routine is applied to the 5:1

paraboloid hill. The points shown represent the maximums determined for
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each fit. Uni-directional motion i8 achieved by keeping the control c_e8

in the proportions computed for the first gradient step until the maxiBal

payoff is l_ssed. A parabola is then computed which fits the points that

bracket the maxinnnn value of the payoff using the following expression to

define the step length_ 6S.

2

6S= Zi 8X i =N

As would be expected, each succeeding fit is in a direction approximately

90 degrees to that of the previous fit, since the routine sees no gradient

in the direction of the previous parabola. Figure 4-13 shows that three fits

were required to reach the optimum on the 5:1 payoff _ll.

When this same routine w_s applied to _e skewed hill, we obtained

the results shown in Figure 4-14. lu this instance, the number of fits

required to reach the peak of the hill was approximately double that @f the

previous case. Since there is no reason why the introduction of a skews@

ridge should produce different behavior with this routine_ we must asstme

that the variation shown between Figures 4-13 and 4-14 is simply the result

of the relative difference in starting conditions used (i.e._ the starting

condition with respect to the ridge was different for these two cases).

Figures 4-13 and 4-14 are somewhat deceptive in that each step taken

by the parabolic fit routine is not shown. In general_ a minimum of three

steps is required for each fit so that the path shown in Figure _-l_ for

example_ actually used twenty-four steps _o reach the top of the hill. Never-

theless, even this represents some improvement over the standard routine

and from other sets of initial conditions a much greater improvement would

be anticipated.

The derivative averaging routine was_not too successful on the payoff-

only hill. A routine of this type must incorporate some safeguards
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to prevent the process from becoming divergent when the step crosses over a

ridge, and one or more of the control derivatives changes sign. In this

particular case, the safeguard used was a test on the sign of the control

derivative that automatically reduced the step size when a sign change was

encountered. Unfortunately, the step size reduction in the case shown in ,

Figure 4-15 was sufficient to stop the routine well out on the ridge. In

the present stud_v we had insufficient time to explore this derivative

averaging technique further. However, we feel that this procedure still

holds great promise and that a variety of effective techniques can be

developed that will circumvent the step size problem. It will be shown in

Section 4.1.4 that the derivative averaging process behaved vet 7 well on the

elongated payoff hill for the problem that included a constraint.

The derivative averaging process would, of course, be of very little

benefit if the complete system optimization cycle, including the trajectory

optimization, had to be completed for each trial step. The idea behind this

routine, however, is that the major non-linearities in the system optimization

problem appear to be traceable to the propulsion equations defined in

Section 2. These propulsion derivatives appear in the expressions for the

payoff and constraint partials and multiply certain elements of the exchange

ratios. It would be possible to rapidly determine the influence of the non-

linearities in these terms by introducing a third iteration loop in the

system optimization program that operated in the same fashion as the derivative

averaging routine described above.
/

Before leaving the discussion of non-linear routines, it is worthwhile

to mention one interesting possibility that was not covered by the present

study but which deserves further exploration. Of course, the ultimate

approach to the hill climbing problem would be some type of routine

that continuously added information on the history of the hill shape

to the direction and step size formulations. A first step in this direction

might be a routine that formed a continually updated solution for the

coefficients of a higher order polynomial representation

•  -z3
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of the payoff hill. A normal gradient path coul_ be pursued until sufficient

steps had been taken to determine the necessary coefficients. The routine

would then attempt to move to the maximum defined by the polynomial in a

single step and from that point the process weuld continuously up,ate the

estimated polynomial coefficients as new information became available.

This procedure then would involve a series of normal gradient steps followed

by a series of second order steps. _he technique should properly recognize

higher order relationships between the payoffs and the controls and the

significant cross-relationships between the controls and the control derivatives.

!
i

4.1.4 The Effect of Constraints

The optimization program modifications discussed above have also been

tested on problems involving both a payoff and a constraint. Figures 4-16

and $-17 show the behavior of the linear optimization routine on this type

of problem. In these figures the constraint is shown as a circle in the X,

Y plane (the constraint hill shape is a i:i paraboloid). _ne maximum

possible payoff with this constraint imposed lies at the intersection of the

constraint circle and the ridge line. The cases shown immediately point out

several problems with the success criterion.

First the success criterion used in the standard routine corrects

each p_yload obtained for the current constraint miss before comparing it

with the payload from the previous case. The procedure is analagous to that

used by the PRESTO trajectory program and is designed to take advantage of

iterations that would normally be rejected because the constraint miss w_s

not within tolerance. The second term in the equation for payoff improvement

(Eq. 2-6) is used to correct the payload for the constraint miss. This

assumes that the correction is obtained with a minimum sum square change in

the controls (i.e., moving on the maximum constraint gradient). When this

expression was used to define the slope 8f , at the last successfUl iteration

I_-25
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in Figures 4-16 and 4-17, the resulting payload a_lJustment for the constraint

miss was too high. Consequently, the routine over-estimated the payload at

those points and was unable to improve on that estimate on further iterations.

In fact, this will usually be the result of this type of p_yoff correction

procedure because the second derivative on the payoff hill is usually

negative and the payoff correction therefore predicts a payload that is too

high. With the full optimization program we attempt to avoid this problem

by limiting the permissible constraint miss that is acceptable for a

successful _teration.

Figures 4-16 and 4-17 also show that the halving procedure used when

the corrected payloads showed a loss introduced difficulty. Previous

experience with the full optimization program led us to believe that it

was appropriate to halve both the payoff improvement asked an_ the constraint

correction asked in the event of a failure. As shown, this results in a

constant direction of motion in the X, Y plane during the halving process

and prevents the run from moving closer to the constraint. It is obvious

that the constraint adjustment should not be reduced in this situation.

To improve the performance of the basic routine on the constraint

problem a rather extensive modification was made in the success criterion.

Figure 4-18 shows the logic for this modification, which is designed to

accomplish several improvements. First the magnitude of the payload correction

for a constraint miss that will be accepted is limited. Second, the sign of

the constraint miss correction is examined to determine wheth_er the possibility

exists that the routine has over-estimated the paylos_l. Third, the proximity

to the constraint is compared with that on the previous iteration to determine

whether it might be appropriate to accept a gain in the uncorrecte_ payload.

Depending upon the circumstances detected by the routine, several courses of

action are possible. __-_--__._-_ ......

_.-28
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The operation with this revised success criterion is shown in

Figures 4-19 and 4-20 for the parabolic constraint surface. It is apparent

that this modified routine has little difficulty in approaching the option

for both cases considered. The action of the constraint biasing procedure

is demonstrated nicely in each of these figures. Figure 4-21 shows the

operation of the same routine for a problem where the shape of the con-

straint surface has been changed to a 5:i parabolold. Again the routine

has little difficulty in approaching the optimum although the route followed

is somewhat c_r_Itou_.

The non-linear techniques described above were also applied to the

problem that includes the constraint. Figure 4-22 shows the behavior of

the uni-directional parabolic fit routine on the constraint problem. We

found it was helpful also to fit with a parabola the constraint miss that

occurred during the generation of the points necessary for the parabolic

payoff fit. When the step was taken to move to the top of a given parabola

the constraint miss was biased in accordance with this fit. As indicated

in Figure _-22 the procedure encountered some difficulty and aa oscillation

developed along the constraint surface about the ridge on the 5:i paraboloid°

Further work will be required to establish the correct approach for h_udling

constraints when the parabolic fit routine is used. However, we feel that

this should present no particular difficulty.

The operation of the derivative averaging routine on the constraint

problem is shown in Figure 4-23. This routine behaved very well, reaching

the optimum in seven steps.

The results achieved for the hill climber simulations that included

a constraint _ust be carefully interpreted. We are caught in somewhat of

a dilemma here because our simple hill climber model was not sufficiently

general to demonstrate a case that includes a constraint and exhibits the

severe oscillations typical of those experienced with the payoff-only problem.
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If more controls were available the mo_el woul_ permit oscillations while

following the constraint but we have been unable to develop a simple concept

that includes more than two controls and at the same time permits reasonable

visualization of the behavior. Unfortunately, with only two controls we

have but one degree of optimization freedom remaining and the constraint

surface acts as a guide that the routine can follow on the way to the

maximum payload.

In conclusion, about all that can be said about the constraint

simulations on the hill climber routine is that they provi&e a useful basis

for testing routines that we are experimenting with on the payoff-only problem.

•he oscillation problem must first be solved for the hill with no constraint

and that solution must work when a constraint is introduced.

4.2 Convergence Gains Study

A brief study was conducted to determine whether a set of optimization

gains could be defined that would significantly improve the behavior of the

full system optimization program. The sixth case from the vehicle mission

matrix described in Section 3 was selected for this study because the

oscillation problems simulated by the skewed ridges considered with the hill

climber were readily apparent during the original passes on this case. In

addition, since only two stages were involved it was possible to complete a

systematic variation in the optimization gains without a very largenumber of

The problem was initiated at the beginning of the third pass for

Case 6 which is shown in Table 3-7- Notice that we required four passes

involving several gain adjustments to complete the original case from that

point. If one control is selected as a reference parameter it then becomes

necessary to complete a systematic variation of each of the three remaining

k-36



controls 4o properly establish the variation in program behavior that can be

achieved with changes in the optimization gains. Table 4-1 summarizes the

matrix of eight optimization runs that were used for this study.

4

The results are summarized in Figures 4-23 through _-2_

these figures show the variation in each of the system controls at

each iteration for the gain combination considered. It is immediately

apparent that for most cases significant oscillations are encountered

although the behavior of the program with the nominal set of gains was quite

acceptable. In this case the only problem evident was that associated with

the creeping second stage burn time although an oscillation did begin to

develop in the first stage burn time and second stage propellant los_Is towards

the end of the run. Some of the gain a_Justments considered produced violent

oscillations and ma_e little progress towards the optimum. One case from

the matrix behaved very well and the program converged smoothly in all

parameters in ten iterations. This was a considerable improvement from the

original solution which required nearly forty iterations from the same point.

After studying the results we were unable to develop any technique for

predicting a priori the most satisfactory gain combination. It is likely

that the proper combination is not only a function of the system being

evaluated but is also sensitive to the particular set of initial conditions

(i.e., nominal system controls selected).

4. B Launch System Optimization with a Second Order Routine

The results achieve& with the parabolic fit routine on the mo_el

problems consider_ with the high speed hill climber formulation were

sufficiently encouragin_ to entice us to experiment with this technique on

the complete system optimlzation_--6Kie_ A major revision was introduce_

in the launch system optimization program to acc_od_te this technique. The



OPTIMIZATIONGAIN MATRIX

Case No.
Gain Multipliers

Stage 1 Stage 2
Propellant Burn Time Propellant Burn Time

1
i Nominal Nominal Nominal

2
i xlO N_i_l N_i_l

3
I N_i_l x _ N_i_l

i N_i_l Nominal x

6

I x _ x _ N_i_l

i x i0 Nominal x i0

7

8

I Nominal x I0 x I0

.I xlO xlO xlO
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approach used is similar to that outlined in Section _.i. Cases 3 an_ 6

from the original vehicle-mission matrix describe_ in Section 3 were

selected as examples and launch system optimization runs were completed

using the parabolic fit procedure.

The new routine behaved fairly well on Case 3. Figure _-27 _shows

the variation in system controls produced. Each iteration in this figure

represents the values determined for the peak of each parabola anf at

least three complete iterations are required per step. The symbols shown

at the right-hand side of this figure define the values compute_ by the

original linear optimization routine. The program seemed to have some

difficulty with the non-linearity of the constraint. T_ parabolic fit was
I

not applied to the constraint error in this case although provision was

included to accomplish a constraint adjustment if the constraint deviation

at any hill peak exceeded the input tolerance. _This situation di_ not

develop since the constraint tolerance input was+_ ib in launch weight.

It is interesting to examine the direction changes occurring at

each peak. Recall that the parabolic fit routine changed dlrection

approximately 90 degrees at each peak on the payoff-only cases considere_

with the hill climber routine. When a constraint is introducea the

behavior changes and the operation approaches the condition where each

step is tangent to the constraint surface. The angle between adjacent fits

will therefore approach zero an_ this is demonstrated by the hill climber

solution shown in Figure _-22. The actual angle between adjacent parabolic

fits used by the full optimization progra_ may be computed using the _ot

product of vectors defining the direction of motion for successive parabolas.

The history of that angle for Case 3 is shown below.



Fie,.. _--27 ..

0

5-

I

!

0



Fit No. Direction Chanse ._ deg

1 ÷ 1_7.7

z + 16z.']'

3 ,_ 20.5

+ l_.9
1

5 +_z7o.8

6 + 5.2

From these figures and from the corresponding payload and launch weight

histories shown in Figure _-28, it can be seen that the routine is

oscillating across the constraint surface as it approaches the maximum

payload. Some form of constraint correction technique such as the bias
J

procedure used wit_ the hill climber routine might improve the operation

on this case. i
I

The operation on Case 6 _as not very satisfactory. Figure _-29

shows that oscillations in the system controls occurred during the run

and that the second stage burn time was creeping. The values determined

by the original gradient routine are shown at the right-hand side of

this figure. The computation apparently has still some distance to go

and this can be confirmed by comparing the final payload shown in

Figure _-30 with that shown for Case 6 in Table 3-i_. The parabolic routine

is about _5o ib low in payload. /

From this brief experiment it appears that the parabolic fit routine

as it is pres@ntly formulated is not very satisfacto_ for the full

optimization problem. Oscillations were still encountered durln6 the

optimization test runs and optimization gain manipulations would _e required

to achieve satisfactory convergence. Apparently the system control inter-

actions must be recognized by the formulation _efor_ second order routines

will offer an advantage.
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Section 5.0

CONCLUSIONS

It is difficult at this point to reach final conclusions.

gradient approach offers a major improvement for the future on

system synthesis problems. While practical reliable routines _ e_

us to date, they are certainly on the horizon. It is fair to say _Bt

are closer to these routines today than we were to the modern traJe_

routine four years ago. Within the next two years we can e_c_ _ba_

_aJor portion of the design synthesis activity presently concer_ _

determining optimums can be redirected toward the more dlfficul_ _lem

of the basic concept, and high speed computer routines can ass_ _

the previous activity.

The work described covers a range of topics on the subJe_t of

applied gradient optimization techniques. The emphasis has been _

experience gained through the application of these techniques to we_

sentative design optimization problems for multi-stage liquid

launch systems. Their mission was to deliver payloads from the _'s

surface to low altitude circular Earth orbits. The material pr_m_1_l

covered the complete spectrum from the detailed problem fo_ _ a

thorough review of the results obtained on specific problems. _

used and the results obtained from a convergence stud_ concernea II_

problems introduced by major non-linearities have been descri_l. _

the techniques investigated were applied to the launch vehicle l_ro_ ima

their behavior was reviewed.

T. conclusion_ the following comments are offered on _be _m3_

considered _uring this study.
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4 A_,ach and Formulation

X. The dual-loop gradient optimization routine described in this report

_ro_uce acceptable solutions to the design synthesis problem for liqui_

p_t launch vehicles when the problem is formulated so that the

i_men_es of the trajectory environment on the design are remove_.

2. The dual-loop technique represents an intermediate position bet_.u

mml error methods with trajectory optimization programs and a corn-

gradient system optimization routine that includes the trajectory

3- It offers the advantage of a series of intermediate design outputs

W_ the corresponding optimum launch trajectories.

Sufficient flexibility is retained to accept any form of design

e_tion by simply replacing the simple relationships presently in use.

_. The routine may be attractive in situations _ere the non-linearltles

i_ _ system cause problems, _ecause second order steps can be compute_ by

re-_vlng the high speed Vehicle loop without re-entering the traJector_

6. The routine is slower than a complete gradient solution since the

n_mber of trajectory optimizations required is equal to the product of the

of system iterations and trajectory iterations rather _han to the

n_dber of system iterations. The trajectory computation requires a high

pez_en'b_e of the total computing time.

7_ The same approach can be used when the environmental influences

e_e known by adding environmental constraints on such parameters as d_e

p_sure and heating_ for example s and then treating those quantities as.

s_ml controls during the optimization process.

O_zation Stud_ Results

1. The major performance changes for continuous burn ascents were those

as_melated with changes in mission altitude and specific impulse.
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2. Fifty percent changes in the stage weight factors produce_ payloa_

changes of less than 6_; however, _hen the system _s re-optlmlzed, radical

changes in the optimized design of the final stage occurred.

!

3. Three-stage configurations did not perform significantly _etter than

two-stage configurations.

4. The total burn time roughly doubled _nen the mission altitude _s

increased from 100 to _O ha.

5- Direct ascent to _00 nm is impractical because the payloa_ loss

from the 100 nm case could be halved by introducing a coast during ascent.

The total system burn time would also be about halved by this change in

the mission mode.

6. The net payload loss associated with changes in the system _si_n

can be significantly reduced by re-optimizing the system; howeverp _tln

general_ rather large changes in the design parameters can be accepSed

with relatively small effects on payload. The major sensitivity is to

the final stage.

Convergence Study

I. Significant convergence problems were encountered with the _1_llent

routine. Solutions for sample pro_le_s encountered during the study usu_

required multiple computer passes with intermediate, gain adjustments.

2. The current routine can be used to determine adequate solutions +¢o

the system optimization problem but does not exhibit the rapi_ reliable

convergence of modem trajectory optimization pro_ms.

3. Severe non-linearities in the form of strong inter-relationships

between the system controls were the source of the convergence _ffieulty.

4. Sidle automated gain selection routines and crude non-lilnear

techniques radically improved performance on some problems. None of these
+
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techniques pro_uce_ consistently s_erior _eh_vior on _ prot_ms.

5. The most effective solutions _r111 recognize the control intersetlou

the form_latlon.
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